DocsGitHub7

Pipeline Specifications

Technical specifications and requirements for building production-ready data pipelines.

Pipeline Types

ETL (Extract, Transform, Load)

  • Data is extracted from source
  • Transformed in the pipeline
  • Loaded into destination
  • Best for: Complex transformations, data cleansing

ELT (Extract, Load, Transform)

  • Data is extracted from source
  • Loaded into destination as-is
  • Transformed in the destination system
  • Best for: Cloud data warehouses, simple transformations

Reverse ETL

  • Data flows from warehouse back to operational systems
  • Syncs analytical insights to business tools
  • Best for: Customer data activation, operational analytics

Streaming

  • Real-time or near-real-time data processing
  • Continuous data flow
  • Best for: Event data, monitoring, real-time analytics

CDC (Change Data Capture)

  • Captures only changed data from source
  • Maintains data freshness with minimal load
  • Best for: Database replication, incremental updates

Required Components

1. Pipeline Metadata

{
  "$schema": "https://registry.514.ai/schemas/pipeline.json",
  "name": "Google Analytics to ClickHouse",
  "identifier": "google-analytics-to-clickhouse",
  "description": "Sync Google Analytics data to ClickHouse for analysis",
  "type": "elt",
  "schedule": {
    "cron": "0 */6 * * *",
    "timezone": "UTC"
  }
}

2. Source Configuration

{
  "source": {
    "connector": {
      "name": "google-analytics",
      "version": "v4",
      "author": "514-labs",
      "language": "typescript",
      "implementation": "default"
    },
    "config": {
      "propertyId": "{{GA_PROPERTY_ID}}",
      "startDate": "30daysAgo",
      "dimensions": ["date", "country", "deviceCategory"],
      "metrics": ["sessions", "users", "pageviews"]
    }
  }
}

3. Transformation Rules

{
  "transformations": [
    {
      "type": "rename",
      "field": "ga:date",
      "to": "event_date"
    },
    {
      "type": "cast",
      "field": "sessions",
      "to": "UInt32"
    },
    {
      "type": "derive",
      "field": "bounce_rate",
      "expression": "bounces / sessions"
    }
  ]
}

4. Destination Configuration

{
  "destination": {
    "system": "clickhouse",
    "config": {
      "host": "{{CLICKHOUSE_HOST}}",
      "database": "analytics",
      "table": "ga_events",
      "engine": "MergeTree()",
      "orderBy": ["event_date", "country"]
    }
  }
}

5. Schema Definitions

  • Source schema (from connector)
  • Transformation schema
  • Destination schema
  • Lineage manifest

6. Error Handling

  • Retry logic with exponential backoff
  • Dead letter queues for failed records
  • Alerting on failures
  • Data quality checks

7. Monitoring & Observability

  • Execution logs
  • Performance metrics
  • Data volume tracking
  • Lineage visualization

Best Practices

Performance

  • Batch data appropriately
  • Use incremental loads where possible
  • Implement proper indexing
  • Monitor memory usage

Reliability

  • Make transformations idempotent
  • Handle schema evolution
  • Implement checkpointing
  • Test failure scenarios

Security

  • Encrypt data in transit
  • Mask sensitive fields
  • Use secure credential storage
  • Implement access controls

Testing Requirements

  • Unit tests for transformations
  • Integration tests with sample data
  • Schema validation tests
  • Performance benchmarks
  • End-to-end pipeline tests